Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix Equations: Direct Transformation-Based Versus Iterative Matrix-Sign-Function-Based Methods

نویسندگان

  • Robert A. Granat
  • Bo Kågström
چکیده

Recent ScaLAPACK-style implementations of the BartelsStewart method and the iterative matrix-sign-function-based method for solving continuous-time Sylvester matrix equations are evaluated with respect to generality of use, execution time and accuracy of computed results. The test problems include well-conditioned as well as illconditioned Sylvester equations. A method is considered more general if it can effectively solve a larger set of problems. Ill-conditioning is measured with respect to the separation of the two matrices in the Sylvester operator. Experiments carried out on two different distributed memory machines show that the parallel explicitly blocked Bartels-Stewart algorithm can solve more general problems and delivers far more accuracy for ill-conditioned problems. It is also up to four times faster for large enough problems on the most balanced parallel platform (IBM SP), while the parallel iterative algorithm is almost always the fastest of the two on the less balanced platform (HPC2N Linux Super Cluster).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the numerical solution of generalized Sylvester matrix equations

‎The global FOM and GMRES algorithms are among the effective‎ ‎methods to solve Sylvester matrix equations‎. ‎In this paper‎, ‎we‎ ‎study these algorithms in the case that the coefficient matrices‎ ‎are real symmetric (real symmetric positive definite) and extract‎ ‎two CG-type algorithms for solving generalized Sylvester matrix‎ ‎equations‎. ‎The proposed methods are iterative projection metho...

متن کامل

An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations

‎In this paper‎, ‎an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed‎. ‎The convergence analysis of the algorithm is investigated‎. ‎We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions‎. ‎Finally‎, ‎some numerical examples are given to demons...

متن کامل

Contributions to Parallel Algorithms for Sylvester-type Matrix Equations and Periodic Eigenvalue Reordering in Cyclic Matrix Products

This Licentiate Thesis contains contributions in two different subfields of Computing Science: parallel ScaLAPACK-style algorithms for Sylvester-type matrix equations and periodic eigenvalue reordering in a cyclic product of matrices. Sylvester-type matrix equations, like the continuous-time Sylvester equation AX −XB = C, where A of size m×m, B of size n×n and C of size m×n are general matrices...

متن کامل

Algorithms and Library Software for Periodic and Parallel Eigenvalue Reordering and Sylvester-Type Matrix Equations with Condition Estimation

This Thesis contains contributions in two different but closely related subfields of Scientific and Parallel Computing which arise in the context of various eigenvalue problems: periodic and parallel eigenvalue reordering and parallel algorithms for Sylvestertype matrix equations with applications in condition estimation. Many real world phenomena behave periodically, e.g., helicopter rotors, r...

متن کامل

Gauss-Sidel and Successive Over Relaxation Iterative Methods for Solving System of Fuzzy Sylvester Equations

In this paper, we present Gauss-Sidel and successive over relaxation (SOR) iterative methods for finding the approximate solution system of fuzzy Sylvester equations (SFSE), AX + XB = C, where A and B are two m*m crisp matrices, C is an m*m fuzzy matrix and X is an m*m unknown matrix. Finally, the proposed iterative methods are illustrated by solving one example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004